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Introduction - |

lon cyclotron waves (ICWs): left-hand circularly polarized waves below the

proton gyro-frequency (fpc)

— In contrast, Alfvén waves are linearly polarized waves at frequencies well below the ion

gyro-frequencies

ICWs have been observed in a variety of space environments, including
upstream of and within planetary magnetospheres

ICWs are often generated by pick-up ions, which are accelerated by the
electric field of a magnetized plasma flowing through a neutral gas

Both remote sensing and in situ

measurements show evidence for
the absorption of fluctuating fields

at the fpc in turbulent cascades

Very little evidence for the

resonant excitation of solar wind

ICWs has been previously
reported
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Introduction - Il

Here we show direct evidence of the existence of strong narrow-band ICWs
at 0.3, 0.7, and 1 AU, and also compare their properties quantitatively, using
high-resolution magnetometer data

The study is confined around solar minimum, and no shocks occurred within
our time windows. In addition, we undertake the survey as far from any
planet or comet as possible, and consider a wide range of solar ecliptic
longitude, and avoid the interstellar Helium focusing cone

ICW criteria we used: (1) transverse power is dominant, (2) |ellipticity| > 0.7,
(3) polarization rate > 70%

For the wave events meeting the above criteria, we examine if the long axis
of the perturbation ellipse is perpendicular to the plane of magnetic field B &
wave propagation direction k, to see if the wave is intrinsically LH waves
In the plasma frame (Stix, 1962; Blanco-Cano, 1995)

We find the majority (over 90%) of the waves have their long axes within
10° of perpendicular to both B and k. We exclude waves which do not satisfy
this criterion. The remaining waves should be ICWs
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2-Hz Magnetic Field Data in RTN Coordinates [nT]

2-Hz Magnetic Field Data in RTN Coordinates [nT]
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An Example of ICWs at 0.3 AU
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y planet.

The wave propagates about 1° away from
the magnetic field. It has an ellipticity of
0.96 and a percent polarization of 98%,
so it is nearly circularly polarized.
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Magnetic Field Data in Minimum Variance Coordinates [nT]
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The ICW Example
in Minimum Variance Coordinates
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Observations of ICWs by MESSENGER:
2008 May 31 —June 9
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An Example of ICWs at 0.7 AU
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We use 1-Hz Venus Express (VEX) magnetic field data, covering £2 hours of

the apocenter,

i.e., the region at least 11.5 Venus radii away from Venus

Within the interval T1-T2, the transverse power dominates. The wave has an
ellipticity of 0.95 and a percent polarization of 97.3%



An Example of ICWs at 1 AU
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8-Hz Magnetic Field Data in RTN Coordinates [nT]
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STEREO A/B are far away from any planet. Surrounding the shown 5.5-min
interval, there are many ICW packets. They are well above the strength of
other natural signals and the instrument noise level

Within the interval T1-T2, the wave has an ellipticity of -0.95 and a percent
polarization of 95.2%. The propagation angle from B is 1.2°

Electric field data are dominated by electrostatic signals at these frequencies
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8-Day Survey of ICWs Using STEREO B
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Occurrence rate (%)

Comparison of Wave Parameters:
0.3,0.7,and 1 AU

LH vs. RH in S/C Frame
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Heliocentric distance

03AU 0.7AU 1AU

Occurrence rate [/day]

ICW duration / total time
[%]

Angle between B and R [°]

Angle between Kand R [°]
Propagation angle from B

[°]
Absolute value of
ellipticity

% Polarization
Power spectra trace [nT?]
(dB)?xr [nTm]
Compressional Ratio

Weighted frequency fsc
in s/c frame [Hz]

Wave frequency fg,, [Hz]
(Doppler shift removed)

Local field B [nT]

Duration [second]

33.7 28.9 15.4
0.94 1.79 1.18

18.2 26.7 25.1

Conservation of Poynting flux
dBxExr? = constant

- (dB)? V, r? = constant

- (dB)?2 B n""2 r2 = constant

- (dB)? r = constant

)

0.160 0.031 0.016
0.010 0.001 0.013

0.59 0.28 0.28

0.144 0.052 0.030

27.1 6.7 4.3

21.0 59.0 51.5




ICW Properties: 1976 vs. 2008

Spacecraft Helios 1 MESSENGER
Time period 1976 Mar 2531 | 2008 May 31—
June 9
Solar cycle phase Solar Min 20/21 | Solar Min 23/24
Local field B [nT] 37.6 27.1
Occurrence rate [/day] 44.0 33.7
Power spectra trace [nT?] 1.120 0.532
We_lghted frequency fsc 0.87 0.59
in s/c frame [Hz]
Wave frequency fsw [HZ] 0.186 0.144

(Doppler shift removed)

More than 300 wave events at each s/c

Comparing with Helios 1 observations in 1976, the ICW wave power
and frequencies observed by MESSENGER in 2008 are smaller. This
is probably due to the weaker IMF of this solar minimum



Elimination of Several
Generation Mechanisms

< The ICWs in the solar wind are ubiquitous in the inner
heliosphere. They exist in regions far away from any
planetary and cometary influence

% No shocks occurred within our observation window

<+ The field direction is close to the solar wind velocity, and the
wave frequency in the s/c frame is higher than the local f,,
so the waves are not locally generated by pickup ions

=» The ICWs must be generated at a location closer to the Sun
than the s/c



Closer-to-Sun Generation Scenario

* There are multiple sources Wave freq / Gyro-frequency of He*
pf neutra-l particles in the 0.3 AU
inner heliosphere. These A prerrree e ey e

neutral particles can be
ionized and accelerated,

forming ring beams, which

would be unstable to the : 1

generation of ICWs O s e e s e
* The ICWs have a frequency 41AU

range of 0.2 — 0.9 local f,, 1

but mostly around 0.3 — N i

0.4 local f,, i.e., close to :

the He* gyro-frequency in : 1

the plasma frame U000 o8 07 o7 Tos Toe T
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Possible Association with Pickup He*?

Pro

» Assuming the f. (0.144 Hz) is constant from the generation region to 0.3
AU, for He*, the field in the generation region should be about 40 nT

* The ICW travel time from the 40-nT region to 0.3 AU (B = 27 nT) is shorter
than the ICWs’ damping time in the case of parallel-to-B propagation
(thousands of i1on cyclotron periods)

Con
« Some ICWs have multiple peaks in the power spectra

Questions

* |Is the He* density high enough to create so many ICWs? Can its radial
variation explain the significant decrease of the wave power?

* Why do not we see many newly generated ICWs at large B-R angle?

« The B-R angle is often small where we see ICWs. How much can the B-R
angle change within the ICW travel distance, which is shorter than 0.1 AU?

Note: Focusing cone is not obvious within 1 AU



Propagation Scenario of
the ICWs in the Solar Wind

& After the ICWs are generated, they can propagate either inward or outward
along the magnetic field. However, they will both be carried out by the
super-Alfvénic solar wind. As they convect outward, much of the ICW energy
has damped and the energy remaining may be only a very small remnant

& The appearance of LH and RH waves in the s/c frame should be due to
outward and inward propagation. The lower power and smaller occurrence
rate of RH waves are consistent with longer travel time and greater damping
experienced by these inward-propagating waves.

& The enhanced occurrence rate of ICWs when the
IMF is more radial is likely due to minimal damping
associated with parallel-to-B propagation since
the wave normal angle is constantly being pulled
toward the radial direction by refraction




Summary and Conclusions

Strong narrow-band ICWs are detected extensively and discretely
from at least 0.3 to 1 AU in the solar wind, far away from the
influence of any planet. They are strongest when the field is more
radial than the nominal Parker spiral. They propagate close to the
magnetic field direction, and are below the local f,c and close to the
He* gyro-frequencies in the plasma frame

The waves are both LH and RH in the s/c frame, but are intrinsically LH
in the plasma frame. The comparison of the LH and RH waves in the
s/c frame, and the radial variation of the frequency and wave power
of the ICWs, is consistent with our closer-to-Sun generation and
outward propagation scenario

As the ICWs approach local foc at a greater heliocentric distance, they
can provide an energy source for extended solar wind heating

A mission flying closer to the Sun should be able to see many more
such ICWs with stronger wave power. More observations and
coordinated models are needed to better understand these ICWs



Backup



8-Hz

8-Hz Magnetic Field Data in RTN Coordinates [nT]
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STEREOQO A/B are far away from any planet. During the 4 minutes
shown above, there are several wave packets. They are well above the
strength of other natural signals and the instrument noise level

Within the interval A1-A2, the wave has an ellipticity of -0.98 and a
percent polarization of 99.9%



ICW Properties: 1976 vs. 2008

Spacecraft Helios 1 MESSENGER
Time period 1976 Mar 25— 31| 2008 May 31-
June 9
Solar cycle phase Solar Min 20/21 | Solar Min 23/24
Local field B [nT] 37.6 27.1
Occurrence rate [/day] 44.0 33.7
Power spectra trace [nT?] 1.120 0.532

Weighted frequency fsc

in s/c frame [HZz] 0.87 0.9
\é\SXSpflreerqsuhei?tc Br/e];;\/(vn\[/lzj)] 0.186 0.144
Angle between B and R [°] 22.0 18.2
Angle between K and R [°] 21.0 19.9
Propagation angle from B [°] 7.2 4.0
Absolute value of ellipticity 0.87 0.83
% Polarization 92.5 93.1
Compressional Ratio 0.021 0.010

Duration [second] 23.5 21.0




Closer- to Sun Generation Scenario

0%* (1)) Strongly Mass-Dependent
' Heating in the Corona
CZ_'ion > Tp > Te
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r/ R
« Alfvén waves in the lower solar atmosphere may provide sufficient energy
flux to heat the corona, but they need an agent to convert their energy to a
form that can heat the core proton efficiently and accelerate the solar wind

» One possible energy transfer is the production and subsequent damping of
ICWSs, which is supported by SOHO observations and coronal models

« The electric field associated with the Alfvén wave fluctuations could
accelerate newly created ions into ring beams, and these ring beams would
be unstable to the generation of ICWs that in turn damp and heat the solar
wind when they interact with the solar wind ions
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